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Two methods are presented for the solution of a class of two dimensional eddy current 
problems. The specific problem considered is that of a wire carrying a periodic current 
parallel to a uniform conducting cylinder. Both methods yield integral equations over the 
boundary of the conductor. The first method is exact while the second is an asymptotic 
procedure valid for a certain parameter range and reflecting the skin effect. Numerical 
implementation procedures arc given for both methods and some numerical results arc 
presented. 

1. INTRODUCTION 

The problem under consideration is the determination of the effect of metallic 
obstacles on electromagnetic fields in air. The obstacles distort the incident field and 
also support eddy currents which produce power losses. 

We consider a very special but important class of these problems and present two 
methods of solution. The first method is theoretically exact and would apply equally 
well to dielectric obstacles. The second is approximate and applies for a certain 
parameter range. It is based on the skin effect and thus applies only for metal. We 
give numerical procedures for both methods and present the results of numerical 
experiments. 

We neglect conduction current in air and displacement current in the metal and we 
assume B = ,u,,, H in the metal. In air we have B = pu, H and D = EE and we note that 
for non-ferromagnetic materials cl0 z p,. The conduction current in the metal will be 
J=oE. 

We make two simplifications. First we treat fields which are time periodic with a 
single angular frequency o. The major assumption is that the fields are transverse 
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magnetic. This means that, with a proper choice of X, y, z axes, E = Ek, 
H = H’i+ H’f, where E, H’ and H2 are functions of x and y only. The prototype 
example, and the one we treat, is that of a uniform cylindrical conductor in the field 
of a wire parallel to the cylinder and carrying a periodic current. 

Scaling is very important for us. If L is a representative length then there are two 
basic non-dimensional parameters: 

a=\/w,oL, p= &&oL. (l-1) 

A common engineering approximation is to neglect displacement current in air which 
means taking p = 0. In MKS units ,u,s is about 3 x low9 so this would seem to be a 
reasonable approximation for moderate frequencies. A second approximation is to 
assume infinite conductivity of the metal, a = co. For copper fi is about 3 so this 
approximation may or may not be valid. For iron, however, \/rum0 is of the order of 
100 so a will typically be large. 

In both our methods there is a modification and simplification when /? = 0. Our 
second method is an asymptotic procedure for large a, the first term of which is the 
infinite conductivity approximation. Numerical experiments indicate that this 
asymptotic procedure yields quite good results for values of a which are not very big 
thus bringing us well within the practical range. When it is valid the second method 
represents a major simplification. 

Several numerical procedures for eddy current problems have been developed in 
recent years. Many of these methods are described in [3]. Some of the methods work 
directly with the differential equations and apply finite elements. Theoretical results 
on procedures of this type are described in [2, 6, 8, 91 and there are many papers on 
applications to specific problems. 

Gur methods belong to the category of boundary integral equations methods. Here 
too there have been many methods proposed. We want to give a brief discussion of 
some of the results and their connections with our work. First we mention the 
extensive discussion in [ 131. The problem treated there corresponds to the infinite 
conductivity situation, a boundary value problem. It is done completely, in three 
dimensions. Two dimensional versions of the perfect conductor problems are 
discussed rigorously in [5, 71. A comprehensive discussion of numerical implemen- 
tation of the method of [ 131 appears in [lo]. 

For the interface problems one finds integral equation procedures discussed in 
[ 12, 151 with remarks on numerical implementations. There is a difference between 
our method and those of [ 12, 151. The latter are based on the use of Green’s theorem 
and, as a consequence, one has to compute the normal derivative of a double layer 
potential in these. Our method avoids this difficulty. 

We have devoted considerable effort in our work to a careful verification that our 
equations do have solutions. A feature of our work, which is new in so far as we 
know, is the treatment of the case in which there is no displacement current outside. 
This requires significant modifications. We believe our methods are, in fact, new and 
rather easily implemented. In particular we do not know of another statement of the 



82 HARIHARAN AND MAC CAMY 

asymptotic procedure we present. We remark, however, that the ideas of that 
procedure are present in [ 161, where the special case of a half-space problem was 
treated. 

We wish to thank the referees for calling our attention to Refs. [ 10, 12, 15, 161. 
The methods presented here appear capable of extension to three dimensional 

problems. They cannot, however, treat inhomogenous or non-linearly magnetic 
materials. 

2. STATEMENT OF THE PROBLEM 

We describe more precisely the problem indicated above. We have an infinite 
conducting cylinder of uniform cross section parallel to the z-axis. We divide position 
coordinates by a cross sectional length to obtain dimensionless variables x and y. We 
let 0 denote the cross section of the cylinder in the x - y plane, Z its boundary and 
J2+ the region outside (Fig. 1). 

We suppose there is a wire’ parallel to the z-axis through (x0, 0) carrying a current 
Z(t) of the form, 

Z(t) = Re(Z,,e-‘“‘). (2-l) 

Following the outline of the Introduction we assume that the electric and magnetic 
fields have the form, 

8(x, y, z, t) = Re(E(x, y) lee-‘“‘), 

X(x, Y, z, t) = WW,(x, y)i+ H,(x, YM e-‘“‘). 
(2.2) 

Y 

I 
r 

, R 

Y fP-- 0 X0 x 
n+ 

FIGURE 1 

’ The case of several wires could also be treated. 
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In particular the field due to the wire will have form (2.2) with 

E0(x9 Y) = w420 fP;<x, YIP 
(2.3) 

H;(x, v) = -$&a Y), q$(x, y) = - +Hy’(BR). 

Here R is as in Fig. 1 and H$” is the Hankel function of first kind and order zero. 
Fields (2.3) satisfy Maxwell’s equations in air. We seek the total fields in the same 

form, that is, 

E = w&,(D, H, =$, H2 =-$,, (2.4) 

where cp is again a function of x and y and p = a@,) in air (metal). Fields (2.4) are 
automatically divergence free and they will satisfy the remaining Maxwell equation if, 

in a+ (air), 

in 0 (metal). 
(2.5) 

The transition conditions across the air-metal interface are that the tangential 
components of electric and magnetic fields be continuous. For (2.4) this implies, 

J&Q+ =Pu,P-v (z)+=(z)- onr, (2.6) 

where the plus and minus denote limits from L!’ and n, respectively. E -E” and 
H-P’ are the scattered fields so we impose the condition: 

q - qi satisfies a radiation condition. (2.7) 

The problem we consider is specified by (2.5)-(2.7).2 We call this problem (P,). 
As indicated in the Introduction we want to consider also the case p = 0. A little care 
is necessary. We recall that the Hankel function Hr’ has the expansion, [ 11, 

k=l k=l 
P-8) 

(An observation that is of importance later on is that both real and imaginary parts 
of 1, are non-zero.) Formula (2.8) shows that 

v;(x, y) = - $ H~VR) = &log R + (&log/I + io) t OV2 log/I) (2.9) 

2 pi is singular at (x0, 0) so (2.5), is to hold only for (x9 Y) + (x,,O). 
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as /3 -+ 0. Thus there is a question as to what to do as p --) 0. It turns out that the 
appropriate thing to do is to keep only the first term on (2.9). We set 

P@, Y) = &log R. (2.10) 

Then the correct problem for /3 = 0 is to make rp -& regular and to require 

Aq=O in Q+, Aq = -ia2y, in 0. (2.11) 

We also need to drop the radiation condition and replace it by, 

(p bounded as r= d--t co. 

We call (2.1 l), (2.12) and (2.6) problem (PO). 

(2.12) 

Remark 2.1. If the obstacles are dielectric rather than metal the only change in 
the problem is that the right side of (2.5), is replaced by -pD E,o’L~~,, where E, and 
cl0 are permittivity and permeability for the dielectric. 

Remark 2.2. We have stated that (PO) is the correct limiting problem. This 
assertion is justified in [4], where it is shown that the (unique) solution of (PB) for 
/3 > 0 tends to that of (P,,) as /I 3 0. This proof is quite complicated and we do not 
include it although it follows from the ideas developed in Section 6. 

Remark 2.3. The eddy current density x is equal to a$‘. Hence we have 

X(x, y, z, t) = Re(wp,a1,rp(x, y) ce-‘O’). (2.13) 

The total current Y(t) flowing in the conductor is obtained by integrating. Recalling 
that the spatial valuables were divided by L and that o,u,aL’ = a2 this yields, from 
(2.13), 

(p(x,y)dxdye-‘“’ (2.14) 

3. THE INTEGRALEQUATION METHOD 

In order to describe and analyze our procedures we need some notation. First we 
need a parametric representation of lY It is convenient to use [0,2n] as a parameter 
range. Thus we assume, 

I? x =X(7), o<r<h, 0 # P(7) = IIS(7)lI. (3.1) 

(Here and in what follows x = (x, y) and ]]x]12 = x2 + y’.) In order to avoid technical 
detail we assume X is analytic. 
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We let T denote the space of continuous 2x-periodic functions and write A?” for 
the mean-value of a function in F, 

Mf = (2x)- ’ f”f(7) d7. 
Jo 

We will be concerned with integral operators on ST If k(o, r) is a square integrable, 
doubly 2n-periodic function we define, 

Kf(u) = (k A f)(u) = 1;” k(o, 7)f(7) ds. (3.3) 

K is then a linear map from Sr into itself. 
We will have to deal with a class of integral operators whose kernels are 

logarithmically infinite. We write, 

Ph 7) = II X(u) - X(7)lL g&, 7) = (274 - ’ log Au, 7), 

u-7 

I 1 

(3.4) 
t(u, 7) = (2~))’ log sin 2 . 

We see that e is jointly 2lr-periodic and it is not difficult to verify that for X analytic 
one has, 

g&J, 7) = m 7) + m(u, 7), (3.5) 

where m is periodic and analytic. We write, as above, 

Gof=goAf and Lf =eAf: 

Next we introduce the fundamental singularities on An = -y*n: 

qr> = - $ zip(yr) y # 0, &o(r) = & log t. (3.6) 

From expansion (2.8) we have, 

where 3 has a second derivative of O(log z) and 4 = O(y’ log y) as y + 0. We use 
gY to construct the simple layer potentials gY, 

gf(x) = j;” f(7) ~y(IIx - X(7)10 d7v (3-g) 

forf E.F. 
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The properties of ZPY are well known. PY is a solution of Au = -y’u in L? and in R’. 
It is continuous in all space and its value on r is an integral operator, 

~7ftX(4) = G$to) - k, A f)(o), gy@, 7) = qP(% 7)). (3.9) 

From (3.4)-(3.7) we have, 

g,(u, 7) = qo, 7) + guv 71, G,=L+R,, 

where T,, has second derivatives of order log )cr - 71. 

The normal derivatives of %, jump across r according to the formula, 

( 1 
1 f(u) -$f * (X(u)) = * Tp(a> + NJW. 

(3.10) 

(3.11) 

Here NJ = nY A J where n,, is continuous. 
We can now describe our solution procedure, first for (P,) with p > 0. Here we 

seek a solution in the form, 

P(X) = qhf(x) in 8, 

v(x) = q3 g(x) + f&xx) in R+. 
(3.12) 

This satisfies (2.5) and (2.7). By (3.9) and (3.11) it will also satisfy (2.6) provided 
that f and g satisfy, 

lumG+f-=~u,G,g+x,, 

-Ll+Nfiaf =LE+N,g+x2, 
2P 2P 

XlW = Pu,v;(x(u))9 x2@) = g cp;(w~N. 

(43) 

(3.13) 

The procedure for (PO) needs some modification. Recall that in (P,,) we require that 
v, be bounded as 11 11 x + co. But from (2.10) we see that (p:(x)- (2x)-’ logllxll as 
11 x(1 + co. Thus the scattered field, (D - & must contain a compensating term. For 
(PO) we take, 

v(x) = qhJb4 in 0, 

v(x) = %3 L?(x) + c + dxx) in R+, 
(3.14) 

where now f, g and the constant c are to be determined. Condition (2.6) again yields 
two equations. A third is obtained by noting that P0 g(x) - Mg log llxll as IJxI( + co. 
Thus our system is, 
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(10) 

Mg = -1, 

where x1 and xz are as in (3.13) but with pi, The third condition of (I,) guarantees 
that p remains bounded at infinity. 

Remark 3.1. The effectiveness of our method depends crucially on the use of the 
simple layers (3.6) to represent the solution. This makes possible the simply 
computed expression (3.11) for the normal derivative. 

Remark 3.2. We have, by (2.5),, (2.6), and Green’s theorem, 

I, jq+)dx=-$jo j&ix=-$ jr ($)-ds 

Since v, is bounded at infinity if@/& = O(R -‘) on llxll= R; hence the limit as R --f 00 
of the first term on the right is zero. The second term, however, has the value l/is* 
since Q - p0 near x0. Hence (2.14) yields, 

S(t) = Re(--iZO e-‘“‘). 

Thus (Z& is equivalent to the statement that the total current in the cylinder is equal 
to Z,, in magnitude. 

4. THE ASYMPTOTIC METHOD 

Here we describe an approximate procedure for large a. Our first step is to 
introduce a local coordinate system (Fig. 2). At each point x=X(r) of Z we 
construct the unit inner normal n(r) = {-i(r f(r)f}/p(r). Points along this 
normal are then given by, 

x = x(r, rt) = X(r) + cm(z). (4.1) 

Equation (4.1) defines a coordinate system in a sufticiently narrow boundary strip fi. 
This means that (4.1) can be solved for, 

in B (r~ small). 
r = T(x), rl = NW (4.2) 

The local coordinate system is orthogonal with the form, 

Q*dr* + dq*, Q<G tl) = (1 - aW)v (4.3) 
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FIGURE 2 

where k is the curvature of r. If t(r) is the unit tangent, t(r) = (2(r);+ I’(r),rJ/~(r), 
the gradient and Laplacian can be expressed as, 

A=Q-’ (4.4 

We seek an expansion of the solution in the form, 

in d 
k=l 

-b,+ 2 bks-k 

(4.5) 
in D. 

k=l 

Here s = fia and the coefficients a,,,, b, are independent of s. Notice that the 
expansion in (4.5) decreases exponentially as we move into the conductor. This 
represents the skin effect (a = fiL/D, where D is the skin depth). In (4.5) one 
should think of a, as functions of r and q and then of x through (4.2) while the b, 
are functions of x. 

The coefftcients ak and b, can be determined recursively by substituting (4.5) into 
(2.5) and (2.6) and equating coefficients of like powers of s. (2.5), , (2.6), and (4.5) 
yield immediately, 

Ab, = -,d2bk, (Ab,=O if/?=O), (4.6) 

b&W)) = 0, Pu, &(X(T)) = plm ak(z9 o>, k> 1. (4.7) 

Noting that differentiation in the outer normal direction is the same as -a/aq we find 
from (2.6), , 

a,@, 0) = t$ (X(r))+; 

ak+ ,(r, 0) = 2 (x(r)) + + 2 (r, o>, k> 1. 

(4.8) 
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The calculation for (2.9, is more complicated. It is facilitated by noting the 
formulas 

grad eeS” = --se-%, de-S” = s2e-~v sQv e-~n, 

Q 

A(fg) = Af + 2Vf. Vg + f 4. 
(4.9) 

With these formulas (2.5), will be found to yield 

2 aa, Q, 
atl+ Q 

-a, = 0, 

2 aa, Q, 
z+--aa,=Aa,-,, 

Q 
k> 2. 

(4.10) 

Equations (4.10) are ordinary differential equations with r as a parameter. They 
may be integrated in the form (Q(r, 0) E I), 

Remark 4.1. It will be recognized that our procedure is completely analogous to 
geometrical optics and formulas (4.10)-(4.11) are familiar in that context. 

Our formulas can be used recursively. Observe that (4.6) and (4.7) show that b, 
satisfies, 

Ab, = -/3’b,(O) in a+, b, = 0 onrfor/?>O (=O). (4.12) 

It must be noted that b, must also carry the singular term p@i). Thus b, is the 
solution of an exterior Dirichlet problem and is the infinite conductivity approx- 
imation. 

Let us consider the exterior Dirichlet problem, 

do = +‘v(O) in J2+, u=v on IY 

u satisfies a radiation condition (II bounded as llxll-, a), 
(4.13) 

for p > 0 @ = 0). Denote the solution by V(x : v). 
Now we proceed as follows. Solve (4.12) for b, and compute @b,/i?n) +. Then 

(4.8) yields a,(z,O) = @b,/&z)’ and (4.11) determines a,(7, ~7). Also (4.7) yields, 

+ WW)=5~,(7,O)=t = VI(Z), t=&J4. 

It follows from (4.6) that b,(x) = V(x, vr). Compute (i?b,/&z)+ and then (4.8) yields 
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a,(7,0) and (4.11) 47, ~7). Moreover from (4.7), &(X(7)) = &2,(7,0) = ~~(7) and 
hence b*(x) = V(x, v2). 

Clearly the process can be continued to get the b, and uk recursively. It is useful to 
observe that if one only wants the first three terms of the exterior field then the inter- 
mediate steps of computing the uL’s can be eliminated. Indeed if we let q -+ 0 in 
(4.10), we find, 

2 (7,0) = -Q,(7,0) a,(73 Q/2 = -Q,k 0) (2) +/2- 

Hence by (4.8) and (4.6), 

v,(7) = WW) = @z(z, 0) = (2) + - Q,(7,0) (2) +/2. 

We can solve problem (4.12) by a simplified version of the procedure in Section 3. 
Consider first /3 > 0. For (4.12) we put 

b,(x) = gfi g(x) + P;(X), G,g+cp;=O on IY (4.14) 

For (4.13), 

4x> = q? &4 G,g=v on K (4.‘15) 

For p = 0 and (4.12) we have, 

b,(x) = go g(x) + C + cp;(x); 
G,g+C+&=O on T, Mg=-1 

(4.16) 

and for /3 = 0 and (4.13), 

u(x) = q g(x) + c; G,g+C=v, Mg=O. (4.17) 

It will follow from the results of Section 6 that the integral equations in (4.14H4.17) 
all have solutions. Note also that with our choice of representation of the solutions 
the normal derivatives are easily computed by means of (3.11). 

Remark 4.2. We conjecture but have not completely proved that (4.5) gives valid 
asymptotic expansions in d and $2 +. Inside the inner boundary of fi, (p should be 
exponentially small. 

5. NUMERICAL IWPLEMENTATJON 

We indicate a procedure for the approximate numerical solution of integral 
equations (1& and (I,) as well as those in (4.14)-(4.17). We introduce a uniform grid 

7, = jh, j=O, l,..., N- 1, h = 27r/N 
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on the parameter interval. We introduce the mapping H: Sr --) RN which takes f into 
its values at the grid points 

(Wj = f(q). (5-l) 

For (1& our goal is to obtain approximations to Hf and Hg, f and g the solution. 
We will approximate the integrals by rectangular quadrature. For any continuous 
kernel k(u, r), rectangular quadrature gives 

HKf zXHJ ~j = hk(7,) Zj), i, j = 0 ,..., N - 1. (5.2) 

For kernels with logarithmic singularities we have to modify this formula. It is not 
difficult to verify the formula, 

I 
2n 

IqcJ, 7) d7 = log sin drrS=-log2. 
0 

This suggests the approximate formula, 

(HLS )i = sf(ri) + /2x (f(7) - f (7,)) e(ti 3 5) d7 
0 

N-l 

z S(Hf )i + h ,so ((Hf )j - (Hf )i) C(7iF rj)- 

(5.3) 

(5.4) 

Our procedure, then, is simply to replace all the integrals occurring in (r,) by their 
approximate values using either (5.2) or (5.4) and replace Hf and Hg by approximate 
values F and G. In (I,) we approximate the last condition as h z:i G, = -1. This 
yields 2N equations for F and G or 2N + 1 for F and G and C and these equations 
are then solved. 

The same procedure can be applied to (4.14)-(4.17) and we note two major 
simplifications. First at each step we solve only N or N + 1 equations. Secondly, the 
process of assembling the matrices for the left-hand sides of (I,) or (I,) is eliminated. 
This is a fairly complicated process since it involves the evaluation of the Bessel 
functions Hi”(fiap). This evaluation can, if necessary, be carried out by using 
approximation formulas given in [ 11. 

Remark 5.1. As a part of our process we compute v, on I’. The calculation of a, 
close to but not on r from (3.12) or the analogous formulas is, however, likely to be 
unstable due to the presence of the logarithmic term in Gj. We point out, however, 
that v, can be obtained for boundary strips a- and fi+ as in Fig. 3. The values on r 
can be computed and also the values of v, on the inner boundary of fi- and the outer 
boundary of 6, can be found from (3.12). Thus Q, satisfies Dirichlet problems in fi- 
and fi+ which can be solved by standard methods, finite differences or finite 
elements. In L?/fi- and in B+/fi+ one can use (3.12). A similar idea is discussed in 
151. 
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FIGURE 3 

In order to test the validity of our procedures we performed some sample 
calculations. We considered the case of a circular cylinder. In this case infinite series 
solutions of (PD) and (P,,) can be obtained by separation of variables. We computed 
approximate values for the first two terms in this series by both our methods. We 
present the results in the tables. 

Table I gives an indication of the accuracy with decreasing grid size. We indicate 
the exact value of ]v] on r (Ex 1~0 ]) at the points fk = nk/5, k = 0, l,..., 5. The solution 
is of course symmetric about y = 0. Table I is the case J3 = 0 with a = fl and the 
ratio of the distance of the wire from the center to the radius was 2.5. We give the 
absolute value of the errors for 20, 30 and 40 mesh points. The L, errors are the 
average errors over the interval. The errors in real and imaginary parts were approx- 
imately the same. 

Remark 5.2. It will be seen that the errors are approximately of order h3. We 
have not completed the error analysis but preliminary results indicate that this is 
correct theoretically. This is rather surprising in view of the crude quadrature rules 
we employed. It rests on the use of the uniform grid and the fact that rectangular 
quadrature for periodic functions with a uniform grid is very accurate. A similar 
phenomenon was observed in [6]. We observe that this is one order of accuracy 
higher than comes from finite element methods which means that one can obtain the 
same accuracy with our method with fewer equations. 

TABLE I 

k IExvl ErrN=20 ErrN=30 ErrN=40 

0 0.2868 0.0093 0.0027 0.0011 
1 0.2634 0.0087 0.0026 0.0010 
2 0.2033 0.0069 0.0020 o.ooo9 
3 0.1305 0.0046 0.0014 0.0006 
4 0.0720 0.0030 0.0008 0.0004 
5 0.0506 0.0024 O.CNM 0.0003 

L, errors 0.0058 0.0017 0.0007 
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0 0.8721 0.0880 0.5222 0.0071 0.4055 0.0033 0.2868 0.0012 
1 0.8150 0.0948 0.482 1 0.0078 0.3741 0.0033 0.2634 0.0013 
2 0.6717 0.1150 0.3773 0.0100 0.2930 0.0037 0.2038 0.0015 
3 0.5170 0.1425 0.2878 0.0127 0.1912 0.0041 0.1305 0.0019 
4 0.4276 0.1501 0.1515 0.0149 0.1121 0.0044 0.0720 0.002 1 
5 0.4070 0.1054 0.1179 0.0158 0.0837 0.0046 0.0506 0.0021 

L, errors 0.1160 0.0113 0.0039 0.016 

Table II gives an indication of the accuracy of the asymptotic approximation. We 
tabulate the same quantities, again for /I = 0, but for four different values of a. Our 
approximate values of (I] on r were computed by using the first three terms of the 
expansion (4.5) in S2+ and then numerically implementing the resulting problems. 

We observe that the asymptotic procedure is not too bad even for the value a = 1 
and its accuracy increases markedly with increasing a = 1. 

6. PROOFS 

In this section we give a very brief outline of the proofs of validity of our 
procedures. The technical details are quite complicated and appear in [4]. Here we 
present only the key ideas. For further simplicity we assume p,,, = pa. 

THEOREM 1. Problems (P,), p > 0, have at most one solution. 

Proof: We introduce some notation. For any region CIJ and curve y and any 
function z we write, 

lzG(4 =J IA2 h 
w 

Izl:(o)=j Ivz12~x, 
w 

A(z)(y) = I, F$ ds. 

(6.1) 

We choose R so large that BR(0) = {x: ]]x]( < R } 3 J2 and put yR = C%?,(O), 
a,+ =B,(O)nB+. 

In (P,), /I 2 0, we need only show that the solution (p for pi I 0 is zero. Let p be 
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such a solution and consider first (P,,). Green’s theorem applied first to R and then to 
J2,+ yields, 

Im~(a,-)(O = -a* lull~(W~ Re4V)U’) = I u, I~(~>~ 

~(~)(Y,)-~((o+)(r)-IY,l:(~,+)=o. 
(6.2) 

The interface conditions yield n@-)(r) = A((P’)(~) and we conclude, 

Imli(cp-)(r)=ImA(y,+)Q=Imd(cp)(y,). (6.3) 

But a, is bounded at infinity. Hence Vq = O(R -‘) on yR ; hence we can let R + 00 in 
(6.3) and conclude that Irnn(q-)(r) = 0. Then the first of Eqs. (6.2) yields v, = 0 in 
Q. It follows that n ((p-)(r) = /i (p + )(Z”) = 0 and passing to limit R = co in the last of 
(6.2) yields rp = 0 in R+. 

When p > 0 the last of Eqs. (6.2) is replaced by 

~((P)(YR)-~((D+)o-l~lI:(~R+)+Pz I44xG)=o. (6.4) 

The imaginary part of (6.4) is, 

A standard argument shows that the radiation condition implies that the limit of the 
term on the right as R + 03 is zero. Hence we conclude as before that 
Im li(u,-)(o = 0 and hence a, = 0 in 0. Now the usual uniqueness theorem for the 
exterior Dirichlet problem for Ap + p2q = 0 implies cp = 0 in D +. 

COROLLARY. Equation (I,) has at most one solution. Ifa is such that ACP = +*a, 
in L?, (p E 0 on r implies p= 0. Then (I,), /3 > 0 has at most one solution. 

ProoJ Again this is a standard argument. The existence of a solution of either set 
with x1 =x2 E 0 is easily seen to produce, via (3.12) or (3.14), a solution of the 
homogeneous boundary value problem (P,) or (PO) which must be zero. This means 
that % ia g 3 0 in Q and %s g or &, g + C is identically zero in R+. Continuation of 

d these unctions to the complementary domains and use of the jump relations and 
uniqueness theorems for the Dirichlet problems then implies f z g E 0, C = 0. 3 

THEOREM 2. The system (I,) has a solution. 

THEOREM 3. Suppose4 that the region R is such Aq = -p*p in a, rp s 0 on r 
implies that rp G 0 in 0. Then (I& has a solution. 

’ See the proof of Theorem 3 below. 
’ This condition on 0 is familiar in diffraction theory. 
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The idea of the proof of these theorems is conceptually simple. For (I,) we invert 
the first and third equations to obtain g in terms off in the form, 

g=f+m”l +h, (6.5) 

where $i is known and K is an integral operator. Substitution of (5.5) into the second 
equation yields a Fredholm equation of second kind for$ The corollary implies that 
the corresponding homogeneous equation has only the zero solution. For (I,) one 
obtains (6.5) by inverting the first equation. 

The above program is technically very complicated and rests on the theory of 
singular integral equations as described in [ 11, 141. Again details are in [4] and we 
present only the basic ideas. 

We need a considerable amount of additional notation. First we observe that 
integral operators can be composed. Thus if K[f] = k A f and .Z[f] = j A f we will 
have K.Z[f] = (k A j) A f, where 

(6.6) 

We recall the operator L, Lf = e A f of Section 2. We need here its derivative. We set 

u-r 
t(a, r) = -&cot -, 

2 
Tf=tAf 

so that T = DL. Finally we need the operator K which subtracts from f its mean value 

CT-(o) = f (0) - MK (6.8) 

The basic result in singular integral equation theory is called Hilbert’s formula 
([ 10, p. 1221). It is, 

-4Ttf = rtt (6.9) 

We recall that G, = L + R,, where R, has a smooth kernel. If we combine this result 
with (6.7) and (6.9) we obtain the main formula we use 

-4TDGJ= -4TDLf - 4TDRJ= -4T=f - 4TDR$, 

=+4TDRJ=f-@4+4TDR,)f=f+JJ (6.10) 

One can show (see [ 141) that the composition of T with the kernel R, yields an 
integral operator with a kernel which is continuous and hence Jy is continuous. 

Our goal is to use (6.10) to obtain formula (6.5). To do this we must discuss the 
problem of inverting the first and third equations of (I,) or the first of (I,). Both 
cases are covered by the following fundamental result, the proof of which is presented 
at the end of the section. 

581/45/1-l 
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LEMMA. (i) There exists a unique function g, and constant c,, such that, 

G, go + co = 0, Mg, = 1. 

(ii) There exists a kernel p(o, 5) such that, 

P(cJ, 5) = -WA 5) + 4(& 4, q smooth, 

nG, PD = z 

Consider the integral equation problem, 

(6.11) 

(6.12) 

(6.13) 

G,g+c=h, Mg= -1. (6.14) 

We seek a solution of (6.14) in the form g = PDh + qg,, . From (6.1 1)2 we see that 
(6.14), will be satisfied if v = -1 - MPDh. With r~ so chosen, (6.13) and (6.ll)i 
yield 

Go g = Go PDh + ?G, go = nGo PDh + MG, PDh - yc, 

=Rh+MGoPDh-rjc,=h+ {MG,PDh-yc,-Mh}. 

Thus we satisfy (6.141, by choosing c = MG, PDh - yc, - Mh. Collecting the results 
we have a solution of (6.14) in the form, 

g=PDh-(MPDh)g,-go, -c = MG, PDh - Mh + c,( 1 + MPDh). (6.15) 

If we combine (6.15), with (6.12) we see that our solution can be written, 

g = -4TDh + QDh - (MPDh) g, - go. (6.16) 

We can now indicate the proof of Theorem 2. Suppose we have a solution. If we set 
h = GG~ [f] -xi we have (6.14). Thus we can apply (6.16) and (6.10) to obtain an 
equation of the form (6.5), where 

K.. = JJ + QDG+f- - WDG+f- > go, 

#I= 4TDx, - QDx, + W’DxAgo - go. 
(6.17) 

Substitution of (6.16) into (I,)* yields the desired second kind equation for J: It is 
shown in [4] that the kernel of the second kind equation is in L, so that Fredholm 
theory applies and one obtains a solution $ Reversing the steps yields g and c and 
one has a solution of (I,). 

The treatment of (ZB) is more complicated still. Our goal is to invert (I,), which 
means solving the first kind equation, 

G,g=h, p > 0. (6.18) 

We perform this task in two steps. First we observe that because of (2.8) we can 
write, 
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Gbg=G,g+&M+Kbg, K,g=k,A g. 

The kernel kB(u, r) is continuously differentiable and Im 1, # 0. 
Consider now the problem 
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(6.19) 

G,g+A,Mg=h. (6.20) 

We can solve this, just as we did (6.14), in the form g = PDh + &, . We have then by 
(6.11) and (6.13), 

G, g + &Mg = h + {MG,PDh - Mh + rl,MPDh} + (A, - co)<. 

Since Im 1, # 0 the constant 1, -c,, is non-zero and we can choose r so as to make 
the last two terms zero. Thus we have a solution of (6.20) in the form 
g = PDh + <(PDh) g,, where r is a linear functional of h. 

We use our last result to invert G,. Suppose G, g = h then by the results of the last 
paragraph and (6.19) we have, 

g = -PDK, g - 4(PDK6 g) go + PDh + t(PDh) go. (6.21) 

Equation (6.21) is again a second kind equation with bounded kernel. If the 
corresponding homogeneous equation has a solution g’ then one can verify that Pb g 
would be a solution of du + ~3% = 0 in ~2 + vanishing on Z and satisfying a radiation 
condition. Hence u E 0 in sh +, Consider then PD g’ in a. It is again a solution of 
Ay, + /3’(0 = 0 with (D = 0 on Z. By our hypothesis on ~2 it follows that PD g’ E 0 in a. 
Then #E 0 since it is the difference of the normal derivatives from inside and outside. 
Hence (6.21) has a solution. 

We have shown that G, has an inverse, the leading term of which is the operator 
PD just as for Go together with (Zo)J. Thus we can proceed just as in the proof for 
(I,), expressing g in terms off and substituting into (I,), to get an equation for $ 
which is once more solvable by our Corollary to Theorem 1. 

We have still to indicate the proof of the Lemma. Suppose go is a solution of (6.11) 
and set U, = PO go. Then AU, = 0 in 0 with ZJ, = -Co on Z so U, = -Co in 0. Also 
we have AU,=0 in R+, U,=-Co on Zand, 

Uo=Mgologr+O(r-‘)=logr+O(r-1) as r=IxI+co. (6.22) 

Nowletu~map~~onto~w~>Rwithw=~(z)suchthat~(z)=z+O(l)asz~oo. 
Such a map exists and is unique by the Riemann mapping theorem. Let z = v(w) be 
the inverse and set F%(w) = U,(y(w)). Then P satisfies, 

A%=0 in Jw( > R, P=--C, on Iw( =R, 

~=log~w~+o(~w~-‘) as IwJ+ co. 
(6.23) 

The only solution of (6.23) is & = log 1 WI, co = -log R. 



98 HARIHARANANDMACCAMY 

It follows from the above the the function U is given in ~2 by 

uo = 1% I C(z)l, co = -log R. (6.24) 

Recall that we had U = -C, in 9. Suppose p = 1. Then from (6.24) and the jump 
relation. 

go= ((J$)+ - ($)-) =-&g/cw (6.25) 

If go is a solution of (6.1 l), it must have the form (6.25). Arguing in the other 
direction we can conclude that (6.25) does indeed solve (6.11). The case where p is 
not one can be handled by a minor variation. This proves (i). 

To establish (ii) we need ideas from [ 141. Consider the integral equation 

DG,g= H. (6.26) 

Since go differs from &’ be a regular kernel and DL = T we see that (6.26) is a singular 
integral equation with index zero (see [ 141). It is shown in [ 141 that the Fredholm 
alternative holds for such equations. Furthermore, when the necessary conditions for 
existence are met there is a resolvent solution of the form g = PH, where P has the 
form (6.12). 

In order to apply the above theory we must investigate the null spaces of DG, and 
its adjoint. The first observation is that the adjoint homogeneous equations has the 
form, 

@Go) x(o) = ,,;= ; go@, ~1 ,x(r) dr = 0. 

One solution is clearly x(r) z 1 so dim q((DGo)*) 2 1. We show it is exactly one. 
Suppose DG, g E 0. Then, integrating, we have Go g = k, a constant. If Mg = 6 

then it follows from (i) of the Lemma that g= agO. Thus dim q(DG,) = 1. It follows 
that constants are the only solutions of (DGo)*h = 0. 

Now consider the equation Go g = h. Differentiating we obtain (6.26) with H = Dh. 
But then SF H ds = 0 so the necessary condition of the Fredholm alternative apply 
and we will have a solution g = PH = PDh of (5.26). Integrating, we have, 

G,PDh = h + k, (6.27) 

where k is a constant. If we average we obtain M(G,PDh - h) = k and substitution 
into (6.27) yields (6.13). 
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